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Abstract 

Recent experiments with additives which reduce turbulent skin 

friction in turbulent shear flow of liquids have suggested that the 

significant changes in the shear flow occur in the flow very near 

the wall, in the region of the viscous sublayer. 4 series of ex- 

periments, in which dilute solutions of drag-reducing fluids were 

injected into turbulent pipe Plow of a Newtonian fluid, were per- 

formed in order to determine whether the presence of the additive 

only in the wall region could produce significant local shear stress 

reduction. It was Pound that the local pressure gradient could be 

reduced by an amount comparable to the flow of a uniform concentra- 

tion when the fluid was injected in the wall region. Conversely, 
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when the fluid was injected into the turbulent core no reduction 

in local pressure gradient occurred until the fluid diffused into 

the wall region. The effects of the injection flow process and 

the injection apparatus were evaluated and found to be small com- 

pared to the results of injection of the drag-reducing fluid. 

INTRODUCTION 

This paper describes an experiment to determine whether local injection 

of very dilute solutions of drag-reducing additives (Toms effect 1j2) into a 

turbulent shear flow causes significant viscous drag reduction. In particular, 

the physical reasoning that the significant changes in the turbulent shear 

layer occur in the viscous sublayer region, as shown by recent studies 3-7 , was 

to be tested by injec-Llon both at the wall and in the turbulent core. The 

effects of the injection process itself were known to cause some drag reduc- 
a tion , and they were taken into account through additional experiments. 

Although recent advances have been made in the explanation of the drag 

redllction mechanism of dilute polymer solutions 9-il a complete theory which 

would predict the effect based on molecular characteristics has not been 

achieved. An empirical correlation which satisfactorily predicts the reduc- 

tion in wall friction has been accomplished, based on observations of a 

thickened viscous sublayer and no change in the mixing length distribution ror 

5 very dilute solutions . In order to obtain a theoretical description of the 

process, the energy budget through the shear layer must be determined, as 

was done by Laufer 12 for Newtonian fluids. Since the viscous sublayer plays 

what seems to be a controlling role in the energy budget of drag-reducing 

fluids, it is important to determine the effects of the additive in the sub- 



layer, while it is absent from the turbulent core, and vice versa. That was 

the primary purpose of these experiments; although, the practical benefits 

of demonstrating significant drag reduction by putting additive in only a 

small portion of the total shear flow were not to be ignored. 

FXPERIMJZNTAL PROCEIXlRES 

A Plexiglas tube test section was added downstream of an intermittent run 

pipe flow facility test section (see Ref. 6 for a description of tne facility 

and instrumentation) with provisions for injecting various fluids either 

through a circumferential, ten-degree angle, l/a-inch slot in the tube wall 

or through a 5/'16-inch diameter tube on the pipe centerline. The test sec- 

tion for injection is shown in Fig. 1. Both test-sections were 1.50-inches 

in diameter, and water flowing at a pipe Reynolds number of .85 x 105 was 

the turbulent shear flow into which the other fluids were injected. The 

following fluids were used in the injection apparatus: (1) water, (2) a 

0.1 percent by weight solution of a guar gum (J-2P, a product of the Western 

Company, Ikllas, Texas) in water, (3) a 0.01 percent by weight solution of a 

copolymer of polyacrylsmide and polyacrylic acid (P-295, a product of the 

Stein-Hall Company, New York) in water, and (4) a solution of corn syrup and 

water having a viscosity about 5 times that of water. Injection rates at 

both locations were varied from about 1 percent to 5 percent of the total mass 

flow through the pipe (1s < ti inj/%otal < 54). This can be compared with the 

mass flow in the viscous sublayer of about 3 percent of the total mass flow. 

The local pressure gradients at several stations up to 40 pipe radii down- 

stream from the point of injection were measured. Flow visualization with 

dye injection showed that the injected fluid remained near the wall for 
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several pipe radii when injected through the wall, and remained near the 

centerline for several pipe radii, when injected at the centerline. A 

reasonably uniform concentration of the injected dye was observed at about 

20 radii from the pint of injection for wall injection and at about 12 radii 

for centerline injection. There was no observed difference in the dye pattern 

between injection of water and the drag-reducing fluids. 

RESULTS AND DISCUSSION 

kth drag-reducing fluids were tested to determine their drag-reducing 

properties in ordinary pipe flow. The data were applied to the correlation5: 
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CD stress; H is pipe radius, D/2; Pew = v ; ; is bulk velocity; v>, is kine- 
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mstic viscosity evaluated at the wall; ~1 is the drag-reduction parameter; 
1 

U *cr = ( +F the critical shear stress,above which drag-reduction 

occurs; and p is fluid density which is unchanged by the additive. 

vw was determined to be 2.65 x 10 -5 ft2/sec for the 0.1 percent J-2P 

solution and 1.06 x 10 -5 ft2/sec for theO.Olpercent P-235 solution at the flow 

rate of the injection experiment. This is compared with Y = 1.32 x 13 -5 
w 

ft2/ set for water at the test conditions. For the J-2P solution, cr = 34.4 
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and u *cr = 0.21 ft/sec; and for the P-295 solution, a = 21.3 and user = 0.15 

ft/sec. The J-2P solution data used to determine the correlation parameters 

are shown in Fig. 2, together with the correlation line. The same type of data 

for the P-295 solution are not shown since the data taken in one of the pipes 

apparently was degraded. Degradation was not a problem with the injected solu- 

tions, however. 

The results of injection of water at the wall and on the centerline are 

shown in Figs. 3 and 4, respectively. Data for several injection rates are 

shown, as well as for the case of no injection which indicates the local dis- 

turbances only due to irregularity in geometry. The ordinate variable displayed 

is the difference between the measured friction factor for injection of water, 

f N ' and the friction factor for a smooth surface (which is given by Eq. 
inj 

(1) for a = 0), fN, divided by fN. 3 is distance from the point of injection 

to the midpoint between the corresponding two static pressure taps. The data 

indicate a reduction in friction factor just downstream from the point of in- 

jection for both wall and centerline injection. Downstream from about 

7 = 12R there is a slight increase in local friction factor, but the change 

is less than 8 percent everywhere downstream from 2 = 6R, except one station for 

centerline injection shown in Fig.b.In the data reduction for injection of 

drag-reducing fluids the effects of injection of water and of the injection 

geometry were taken into account by subtracting the friction factors for the 

injection of water from the measured friction factors. 

!!he effects of injecting the high viscosity corn syrup solution is shown 

in Fig. 5 for both wall and centerllne injection. The measured friction factor 

for water injection, fN ,is subtracted from the measured friction factor for 
w 
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the corn syrup solution, fNNN ,and the difference is divided by fN. Center- 
inj 

line injection gives a deviation in f of less than 4 percent downstream from 

2 = 6R, with a slight increase in f far from the point of injection. Wall 

in,jection gives a reduction in f near the point of injection with an increase 

up .to 8 percent appearing at about R = 8R. This increase diminishes down- 

stream to about a 2 percent increase far from the slot. This indicates that 

the local friction factor for wall injection is increased for an increase in 

viscosity of a Newtonian injectant fluid. The increase appears only after 

the reduction due to the injection itself, and before the viscosity at tine 

wall is decreased by diffusion. This is a significant result since the 0.1 

percent J-2P solution has a kinematic viscosity about 2.5 times that of 

vatcr; and if the local friction factor is to be decreased by the additive the 

effect must overcome the effect of the increased viscosity. 

Figure 6 shows the effect of injecting the 0.1 percent solution of J-2F 

at the wall. Here the f for injection of water was subtracted from the f for 

injection of J-2P and the result was divided by the smooth-wall Newtonian 

friction factor. It should be noted that the ordinate scale has been com- 

pressed by a factor of 10, cornFared to the previous data plots. The data 

show f to be reduced for all injection rates, with the reduction becoming 

less for downstream stations, as the concentration near the wall decreases 

due to diffusion. The small drag-reduction shown near the slot is probably 

an effect of the injection geometry and because of large changes in pressure 

gradient over short distances in that region the data cannot be considered 

to have good accuracy. Note that for the lowest injection rate, and pre- 

sumably the smallest local effect of injection itself, this minimum does 



not appear in the data. 

Predictions of the friction factor reduction were made from the correla- 

tion expression for the cases of uniform concentrations of 0.1 percent and 0.005 

percent J-?P, which should correspond to the concentrations near the Gall at 

the injection point and far downstream, respectively (for the case of the 

maximum injection mass ratio). The prediction was made for a 0.005 percent 

solution assuming a linear variation of Q with concentration and no variation 

Of %cr with concentration. The predicted difference in friction factors at 

the Reynolds number based on the viscosity of the QlpercerCJ-2P solution is 

37 percent, which is less than the maximum reduction observed. If the vis- 

cosity of water is used to determine the Reynolds number, the predicted re- 

duction is 70 percent, which is greater than observed. Because of diffusion, 

the reduction should be between the two predicted values. Also, the data indicate 

a process which more than compensates for the increase in viscosity of the 

drag-reducing solution. By assumption of a linear variation of CT with con- 

centration, the reduction in f predicted for a 0.005 percent concentra- 

tion is about4 percent for the maximum injection rate shown. This is less 

than the asymptote of about 10 percent which the data seem to approach 

downstream, which suggests that the solution very near the wall is diffused 

more slowly than the dye pattern indicates. It is possible that the linear 

interpolation is not correct at that low concentration, but those data are 

not available at this time. This suggested effect would, of course, work 

in favor of drag reduction by injection of small amounts of polymer nolutlon 

at the wall. 

&ta for injection of the J-PP solution at the centerline are shown in 



Fig. 7. The data show the local friction factor to be increased or unchanged 

upstream.of the region where the injected dye was observed to reach the wall 

at an 2 of about 12 radii, and to be decreased downstream of that region. 

This further confirms the idea of the effectiveness of the drag-reducing fluid 

in the wall region. The reductions in f are smaller than for wall injection, 

of course, since the concentration is reduced by diffusion before the additive 

reaches the wall. The oredicted reduction in friction factor for a 0.005 percent 

solution of J-2P (which is a uniform solution far downstream from the injec- 

tion point for the maximum injection rate) is about 4 percent. This prediction 

agrees Pairly well with the measured values, once the fluid reaches the wall 

region. 

The data for injection of P-295 at the wall is shown in Fig. 8. For 

this much more effective additive there is also a significant reduction in f, 

with a maximum reduction of about 55 percent. This compares with a maximum 

reduction of about 35 percent predicted from the correlation for a uniform con- 

centration. (There is no question about the Reynolds number here, since the 

P-295 solution has almost the same viscosity as water). The friction factor 

far downstream is also reduced more than would be predicted by assuming com- 

plete diffusion. !I!he predicted reduction in f far downstream is about one 

percent for the maximum injection rate. Therefore, the vail effect of the 

drag-reducing fluid is also shown for this very effective fluid. 

CONCLUSIONS 

The following conclusions can be stated, based on the experimental ob- 

servations: 

1. The effects of the injection apparatus on the local pressure gradient 



are small compared to the drag-reduction effects. 

2. Dilute solutions of drag-reducing fluids in turbulent shear flow 

cause appreciable reduction of local pressure gradient when the drag-reducing 

addftives are only in the region of flow near the wall. 

3. Con;rersely, dilute solutions of drag-reducing fluids do not reduce 

the local pressure gradient unless they are present in the region of flow 

near the wall. 

4. The magnitude of observed pressure gradient reduction is greater 

than that predicted if the viscosity of the drag-reducing fluid is assumed 

for the case of wall injection, for fluids where the visccsity is greater 

than that for water, but the observed magnitude is close to the predicted 

vcluc if the viscosity of water is assumed. That is, it is suggested that 

the local drag-reduction effect is not diminished due to the increased vis- 

cosity of the injected fluid. 

5. The local pressure gradient far downstream of wall injection is re- 

duced more than predicted for a fully diffused injectant, whereas the re- 

duction is about as predicted far downstream of centerline injection. This 

indicates that the diffusion from the wall flow region is relatively slow 

and maintains the concentration of the additive at a significantly high level; 

although, these calculations are not sufficiently accurate to prove this 

point due to a lack of detailed information about the drag-reduction proper- 

ties of very dilute (trace) solutions. 

6. Further experiments are needed to better define the diffusion of 

drag-reducing fluids in turbulent shear flow. 
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Mgure 1 Sketch of test section for fluid injection. 



A/ 

1 z2t 

0 WATER 
A ,l% J-2P, D = 314 
D .l% J-2P, D = 3/2 
- CORRELATION EQUATION (1) 

fi 20- 

18- 

16- 

14- 

12- 

- 

10’ I 
100 200 400 600 800 1000 2000 4000 6000 8000 10,000 

REW fi 
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